👨🏿‍💻
Learn
  • Learn And The Power Of Community
  • Intro
    • learn-co-curriculum/welcome-to-learn-verified
    • learn-co-curriculum/your-first-lab
    • learn-co-curriculum/environment-setup
  • Intro to tic tac toe
    • matz-readme
    • what-is-a-program?
    • hello world
    • Intro to irb
    • Reading-error-messages
    • Data-types
    • variable
    • Variable-assignment lab
    • String interpolation
    • Interpolation-super-power
    • Welcome to tic tac toe
    • Array
    • Tic tac toe board
    • Intro to methods
    • Puts print and return
    • Intro-to-tdd-rspec-and-learn
    • Methods and arguments
    • Say hello (lab)
    • Methods-default-arguments
    • ttt-3-display_board-example
    • ttt-4-display-board-rb
    • Intro-to-cli-applications
    • Greeting-cli
    • cli-applications in Ruby
    • Ruby-gets-input
    • Tic tac toe move
    • Truthiness-in-ruby-readme
    • booleans
    • conditional (if)
    • ttt-6-position-taken
    • ttt-7-valid-move
    • rspec-fizzbuzz
    • Looping-introduction
    • Loop
    • while-and-until-loop
    • Tic Tac Toe Turn lab
    • looping-while-until lab
    • Tic Tac Toe Play Loop (lab)
    • Tic Tac Toe Current Player (lab)
    • Intro to ruby iterators
    • Nested Arrays
    • Boolean Enumerators
    • Search Enumerators
    • Tic Tac Toe Game Status
    • tic-tac-toe
  • OOP tic tac toe
    • intro to oop
    • Intro-to-classes-and-instances
    • Classes-and-instances-lab
    • Instance-methods
    • Instance-methods-lab
    • Object Attributes
    • object-attributes-lab
    • Object Initialization
    • Object-initialize-lab
    • oop barking dog lab
    • Procedural-vs-oop
    • oop tic tac toe
  • Git and github
    • Intro to Version Control
    • Git Repository Basics
    • Git-basics-quiz
    • Forks-and-clones
    • Git Remotes and Github
    • Git Remotes and Github Codealong
    • Thinking Ahead: GitHub as Career Differentiator
    • Github Pull Requests
    • Git Collaboration
    • Git-collaboration-quiz
    • Git Basics Quiz
  • HTML
    • A-quick-tour-of-the-web
    • The-web-is-made-of-strings
    • What-makes-the-web-possible?
    • html-introduction
    • Your first-html-tag-lab
    • Nested-tags-and-attributes
    • Well-formed-html-document-lab
    • HTML elements types overview
    • Researching-HTML-elements
    • Separation-of-content-and-presentation
  • CSS
    • Introduction-to-css
    • introduction-to-css-code-along
  • Procedural Ruby
    • Regex-what-is-a-pattern
    • Regex-basics
    • Regex-lab
    • Regex-match-scan-grep-methods
    • learn-co-curriculum/method-arguments-lab
    • Method-scope
    • Return Values Lab
    • Debugging-with-pry
    • Method-scope-lab
    • Truthiness-code-challenge
    • If Statements Lab
    • Case-statements
    • Case-statements-quiz
    • Logic and Conditionals Quiz
    • Ternary Operators and Statement Modifiers lab
    • Looping Lab
    • looping-quiz
    • learn-co-curriculum/looping-times
    • countdown-to-midnight lab
    • Array introduction
    • Using Arrays
    • Array-CRUD-lab
    • Array-methods
    • Array-methods-lab
    • Square array lab
    • Collect and Return Values
    • Collect Lab
    • Badges and Schedules Lab
    • Oxford comma lab
    • Deli counter lab
    • Reverse Each Word Lab
    • Yield-and-blocks
    • Each Lab
    • Return from Yield Statements
    • My All? Lab
    • My Find Lab
    • Cartoon Collections Lab
    • Enumerators Code Challenge
    • Prime? Lab
    • Sorting
    • Sorting Lab
    • Introduction to Hashes
    • Using Hashes lab
    • Ruby-symbols
    • Hash iteration
    • Hash Iteration Lab
    • Hash Iteration with Collect
    • Intro to Nested Hashes
    • Building Nested Hashes
    • Building Nested Hashes Lab
    • Nested Hash Iteration
    • Nested Hashes Lab
    • Multitype Collections Lab
    • Iterating over Nested Hashes Codealong
    • Other Hashes Codealong
    • Hashes Manipulation Lab
  • OOP Ruby
    • OO Ruby Video: Object Orientation Overview
    • Object Accessors
    • Instance Variables lab
    • Video Review: Object Properties
    • Meowing Cat
    • Intro to Object Orientation - Ruby
    • oo basics lab
    • OO Basics with Class Constants
    • Self
    • OO School Domain lab
    • OO Counting Sentences lab
    • Class Variables and Methods
    • Class Variables and Methods Lab
    • Remembering Objects
    • Puppy Lab
    • Advanced Class Methods
    • Advanced Class Methods Lab
    • Video Review: Object Models
    • OO Email Parser lab
    • OO Anagram Detector lab
    • OO Cash Register lab
    • Intro to Object Relationships
    • Belongs to Object Lab
    • Has Many Object
    • Has Many Object Lab
    • Collaborating Objects Review
    • Collaborating Objects Lab
    • OO My Pets
    • oo kickstarter lab
    • OO Banking lab
    • Has Many Objects Through
    • Has Many Objects Through Lab
    • Intro to Inheritance
    • Intro to Inheritance Lab
    • Super
    • Super Lab
    • Intro to Modules
    • Intro to Modules Lab
    • Mass Assignment
    • Mass Assignment and Metaprogramming
    • Mass Assignment Lab
    • Custom Errors lab
    • OO Triangle lab
  • Scraping and project
    • Gems and Bundler
    • Scraping
    • Scraping Lab
    • Kickstarter Scraping Lab
    • Video Review: Object Orientation and Scraping
    • OO Ruby Object Orientation Video Review
    • Music Library CLI
    • Video Review: Music Library CLI
    • Tic-tac-toe with AI project
    • Student Scraper
    • CLI Data Gem Portfolio Project
    • CLI Data Gem Walkthrough
    • CLI Data Gem Walkthrough: Creating a CLI Scraper Gem
    • Common Anti-Patterns in CLI Data Gem
    • Student Example 1: Refactoring CLI Gem
    • Student Example 2: Refactoring CLI Gem
  • SQL
    • What is SQL
    • SQL Intro and Installation
    • SQL Database Basics
    • SQL Databases and Text Editors
    • SQL Data Types
    • SQL Inserting, Updating, and Selecting
    • Basic SQL Queries
    • SQL Aggregate Functions
    • SQL Aggregate Functions Lab
    • SQL Bear Organizer Lab
    • Edgar Codd and Table Relations
    • Table Relations
    • SQL JOINS
    • SQL Complex Joins
    • SQL Join Tables
    • Grouping and Sorting Data
    • SQL Joins Review Lectures
    • SQL Crowdfunding Lab
    • SQL Library Lab
    • Pokemon Scraper Lab
  • ORM And Active record
    • Why an ORM is Useful
    • Mapping Ruby Classes to Database Tables
    • Mapping Classes to Tables Lab
    • Mapping Database Tables to Ruby Objects
    • Mapping Database Rows to Objects Lab
    • Updating Records in an ORM
    • Updating Records in an ORM Lab
    • Preventing Record Duplication
    • ORMs Lab: Bringing It All Together lab
    • Dynamic ORMs
    • Dynamic ORMs with Inheritance
    • ActiveRecord Mechanics
    • Translating from ORM to ActiveRecord
    • Intro to Rake
    • Mechanics of Migrations
    • Writing Our Own Migrations
    • Migrations and Active Record Lab
    • ActiveRecord CRUD Lab
    • Advanced Finding Lab
    • ActiveRecord Associations
    • ActiveRecord Associations Lab
    • ActiveRecord Associations Lab II
    • ActiveRecord Associations Video Review
    • ActiveRecord Associations Video Review II
    • Video Review: Aliasing ActiveRecord Associations
    • Video Review: Blog CLI with ActiveRecord and Associations
  • Rack
    • How the Internet Works
    • Increasing Layers of Abstraction
    • Inspecting the Web with Rack (lab)
    • The HTTP Request
    • Dynamic URL Routes
    • Dynamic Web Apps with Rack (lab)
    • Rack Responses Lab
    • Rack Routes and GET Params Lab
    • HTTP Status Codes
    • Dynamic URLs and Status Codes Lab
    • Video Review: How The Web Works, Pt 1
    • Video Review: How the Web Works, Pt 2
  • Html
    • How the Web Works
    • Site Planning
    • HTML Fundamentals
    • HTTP Status Codes
    • video review how the web works pt 1
    • How the Web Works, Part 2: Overview
    • Setting Up a New Site
    • Document Structure
    • Text Formatting
    • HTML Tables
    • Html-images
    • HTML Links
    • Html backing-up changes
    • HTML Validation
    • Quiz - HTML Fundamentals
    • Dev Tools Super Power
    • HTML Lists
    • Html issue bot 9000 (lab)
    • HTML Forms and Iframes
    • HTML Map and Contact Form Code-along
    • HTML5 Media
    • HTML5 Video Embed Code-Along
    • HTML5 Semantic Elements
    • HTML5 Semantic Containers Code-along
    • HTML5 Quiz
  • CSS
    • CSS Fundamentals
    • CSS Styling Code Along
    • My Little Rainbow
    • CSS Kitten Wheelbarrow
    • CSS Graffiti Override Lab
    • CSS Issue Bot 9000
    • Your first deployment
    • The Box Model
    • Layout Types
    • Float
    • Clearfix
    • Centering
    • Column Structure
    • CSS Columns Code Along Exercise (lab)
    • Box Model & Page Layout
    • Using Z Index
    • Positioning
    • ZHW Shoes Layout (lab)
    • Zetsy (lab)
    • CSS Box Style Code Along
    • Animal Save (lab)
    • Building Responsive Sites
    • Intro to Responsive Media
    • CSS Media Queries
    • Working with Responsive Type
    • Responsive layout
    • The Viewport Property
    • Responsive Features Code-Along (lab)
    • Bootstrap Introduction
    • Bootstrap Code-Along
    • Bootstrap Grid System
    • Grid Layout Code-Along
    • Bootstrap Navbar Code-Along
  • Sinatra
    • What is Sinatra?
    • Sinatra From Scratch
    • Using the Shotgun Development Server (lab)
    • Sinatra Basics
    • Sinatra Hello World Basics (lab)
    • Routes in Sinatra
    • Sinatra Routes Lab
    • Intro To MVC
    • Sinatra MVC File Structure (lab)
    • Sinatra Views: Using ERB
    • Sinatra Views (lab)
    • Sinatra Basic Views Lab
    • Sinatra Views Lab II
    • Intro To Capybara
    • Dynamic Routes in Sinatra
    • HTML Forms and Params
    • Passing Data Between Views and Controllers in Sinatra
    • Sinatra Forms Lab
    • Sinatra Yield Readme
    • Integrating Models Sinatra Code-along
    • Sinatra MVC Lab - Pig Latinizer
    • Sinatra Basic Forms Lab
    • Sinatra Forms
    • Nested Forms Readme
    • Sinatra Nested Forms Lab: Pirates!
    • Lab Review-- Sinatra Nested Forms Lab: Pirates
    • Sinatra Nested Forms Lab: Superheroes!
    • Sessions and Cookies
    • Mechanics of Sessions
    • Sinatra Basic Sessions Lab
    • Using Sessions
    • Sinatra and Active Record CRUD
    • Sinatra Activerecord Setup
    • Sinatra ActiveRecord CRUD
    • User Authentication in Sinatra
    • Sinatra Sessions Lab - User Logins
    • Securing Passwords
    • Secure Password Lab
    • Sinatra Authentication- Overview
    • RESTful Routes
    • Restful Routes Basic Lab
    • Sinatra ActiveRecord Associations: Join Tables
    • Using Tux in Sinatra with ActiveRecord
    • ActiveRecord Associations in Sinatra
    • Sinatra Multiple Controllers
    • Sinatra and Active Record: Associations and Complex Forms
    • Sinatra Playlister (lab)
    • Welcome to NYC Sinatra! (lab)
    • Building a Site Generator, Part 1- Overview
    • Building a Site Generator, Part 2- Overview
    • Fwitter Group Project
  • Rails
    • Welcome To Rails
      • Rails Application Basics
      • Rails Static Request
      • Rails Hello World Lab
      • Rails Model View Controller
      • Intro to Rails- Overview
    • Intro to REST
    • Active Record Models and Rails
    • ActiveRecord Model Rails Lab
    • RESTful Index Action Lab
    • Rails Dynamic Request
    • Rails Dynamic Request Lab
    • Rails URL Helpers
    • Rails URL Helpers Lab
    • Rails form_tag
    • Rails form_tag Lab
    • Create Action
    • Create Action Lab
    • Index, Show, New, Create Lab
    • Edit/Update Action
    • form_for on Edit
    • Strong Params Basics
    • form_for Lab
    • Rails Generators
    • CRU with form_for Lab
    • Resource and Scaffold Generator
    • Rails Blog scaffold
    • Todo mvc assets and managing lists
    • Rails Forms Overview
    • ActiveRecord Validations
    • ActiveRecord Validations Lab
    • Validations in Controller Actions
    • Validations In Controller Actions Lab
    • Validations with form_tag
    • Validations with form_for
    • DELETE Forms and Requests
    • Testing in Rails
    • Validations with form_tag
    • CRUD With Validations Lab
    • Join the Fun rails
    • Activerecord lifecycle reading
    • Displaying Associations Rails
    • Active Record Associations Review
    • Forms And Basic Associations Rails
    • Forms And Basic Associations Rails Lab
    • Basic Nested Forms
    • Displaying Has Many Through Rails
    • Displaying Has Many Through Rails Lab
    • Has Many Through Forms Rails
    • Has Many Through Forms Rails Labs
    • Has Many Through in Forms Lab Review- Overview
    • Deep Dive into Nested Forms- Overview
    • Layouts And Templates in Rails
    • Rails Layouts And Templates Lab
    • Simple Partials
    • Simple Partials Lab
    • Partials with Locals
    • Partials with Locals
    • Refresher on MVC
    • Refactoring Views With Helpers
    • Refactoring Views With Helpers Lab
    • Model Class Methods
    • Optimal Queries using Active Record (lab)
    • Routing And Nested Resources
    • Nested Resource Routing Lab
    • Modifying Nested Resources
    • Modifying Nested Resources Lab
    • Namespaced Routes
    • Namespaced Routes Lab
    • Todomvc 2 lists have items
    • TodoMVC 3: Mark Items Complete
    • Todomvc 4 refactoring with partials and helpers
    • Todomvc 5 deleting items
    • Introduction to Authentication and Authorization
      • Cookies and sessions
      • Cookies and Sessions Lab
      • Sessions Controller
      • Sessions Controller Lab
      • Login Required Readme
      • Login Required Lab
      • Using has_secure_password
      • Has_secure_password lab
      • Authentication- Overviewn
      • OmniAuth
      • Omniauth Lab
      • Omniauth review lecture in todomvc
      • Authentication and authorization recap and gems
    • Rails Amusement Park lab
    • How to Find Gems
  • JavaScript
    • Intro to JavaScript
      • JavaScript Data Types
      • JavaScript Data Types Quiz
      • JavaScript Variables
      • JavaScript Comparisons
      • Conditionals
      • Logical Operators
      • Functions
      • Intro to Debugging
      • Intro to Testing
      • JavaScript Basics Quiz
    • Scope
      • Scope chain
      • JavaScript Practice Scope Lab
      • Lexical scoping
      • Errors and Stack Traces
      • Hoisting
    • Arrays And Objects
      • Objects
      • JavaScript: Objects and Arrays Quiz
      • Object Iteration
      • JavaScript Logging
      • Traversing Nested Objects
      • Filter
      • Map
    • Functions Revised
      • First-Class Functions Lab
      • First-Class Functions
      • First-Class Functions Practice
      • First-Class Functions Practice Lab
    • OOP
      • Creating Objects
      • Object Methods and Classes
      • Using Prototypes
      • Using Classes in Javascript
      • JavaScript This Walkthrough
      • This Code-along
      • Bind, Call, and Apply Readme
      • Bind, Call, Apply Lab
      • Object Relations
      • Association Methods in Javascript
      • Class Relations Lab
      • JavaScript Closures and Higher Order Functions
      • Closures Lab
      • JavaScript Arrow Functions
      • Daily Lunch Lab
    • DOM
      • Introduction to the DOM
      • Introduction to the DOM Lab
      • More on the DOM
      • Creating and Inserting DOM Nodes
      • The DOM Is a Tree
      • Listening to Nodes
      • Modify HTML With jQuery
      • Modifying HTML Lab
      • jQuery Selectors
      • Document.ready
      • Acting On Events Lab
      • DOM Quiz
    • Templates
      • Introduction to CSS
      • CSS Quiz
      • CSS Libraries
      • CSS Libraries Lab
      • Intro to Templates
      • Template Engines
      • Template Engines Lab
      • Advanced Templating
      • Advanced Templating Lab
    • Asynchronous JavaScript
      • Intro to XHR Code Along
      • Hitting APIs Lab
      • Advanced AJAX Lab
      • AJAX and Callbacks
      • AJAX and Callbacks Lab
      • REST Refresher
      • REST Quiz
      • Fetch
      • JavaScript fetch() Lab
      • Intro to Mocha
      • Testing with Spies
      • Testing with Mocks and Stubs
  • Rails and JavaScript
Powered by GitBook
On this page
  • Objectives
  • Overview
  • Instructions
  • 1. Define WIN_COMBINATIONS
  • #won?
  • #full?
  • #draw?
  • #over?
  • #winner
  1. Intro to tic tac toe

Tic Tac Toe Game Status

Objectives

  1. Define a constant.

  2. Create a nested array.

  3. Use iteration.

  4. Iterate over a nested array.

  5. Find matching booleans from an array.

  6. Find matching elements from an array.

  7. Count matching elements in an array.

Overview

We'll be building helper methods that introspect and report on the various game states in Tic Tac Toe, including if the game has been #won?, if the game board is #full?, if the game has been a #draw?, if the game is #over?, and finally who the #winner is.

Instructions

1. Define WIN_COMBINATIONS

The first method to build is #won?. In order for that method to function, it will have to know about all the possible winning combinations of Tic Tac Toe.

Tic Tac Toe has 8 possible ways to win: 3 horizontal rows, 3 vertical columns, and 2 diagonals. The game board is represented by an array, board = [" ", " ", " ", " ", " ", " ", " ", " ", " ",], with 9 positions, indexed from 0-8. You could represent the coordinates of a win condition by referring to their index in the board. For example a win in the top horizontal row:

 X | X | X
-----------
   |   |
-----------
   |   |

You could represent that as the indexes of the board [0,1,2].

# Board with winning X in the top row.
board = ["X", "X", "X", " ", " ", " ", " ", " ", " "]

# Definition of indexes that compose a top row win.
top_row_win = [0,1,2]

# Check if each index in the top_row_win array contains an "X"
if board[top_row_win[0]] == "X" && board[top_row_win[1]] == "X" && board[top_row_win[2]] == "X"
  "X won in the top row"
end

Each win combination could be represented as a 3 element array referring to the indexes in the board that create a win possibility.

Create a nested array of win combinations defined in a constant WIN_COMBINATIONS within lib/game_status.rb. It's structure should resemble:

WIN_COMBINATIONS = [
  [0,1,2], # Top row
  [3,4,5]  # Middle row
  # ETC, an array for each win combination
]

Run the tests with learn until your WIN_COMBINATIONS contains all the possible solutions.

What's a CONSTANT

A Constant is a variable type in Ruby that has a larger scope than our local variables, namely, methods can read values from constants defined outside the method. Constants are a variable type for data that is unlikely to change. You can define a constant by starting the variable definition with a capital letter.

#won?

Now that we have a constant that defines the possible win combinations (WIN_COMBINATIONS), we can build a method that can check a tic tac toe board and return true if there is a win and false if not.

Your #won? method should accept a board as an argument and return false/nil if there is no win combination present in the board and return the winning combination indexes as an array if there is a win. To clarify: this method should not return who won (aka X or O), but rather how they won -- by means of the winning combination.

Iterate over the possible win combinations defined in WIN_COMBINATIONS and check if the board has the same player token in each index of a winning combination. The pseudocode might look like:

for each win_combination in WIN_COMBINATIONS
  # win_combination is a 3 element array of indexes that compose a win, [0,1,2]
  # grab each index from the win_combination that composes a win.
  win_index_1 = win_combination[0]
  win_index_2 = win_combination[1]
  win_index_3 = win_combination[2]

  position_1 = board[win_index_1] # load the value of the board at win_index_1
  position_2 = board[win_index_2] # load the value of the board at win_index_2
  position_3 = board[win_index_3] # load the value of the board at win_index_3

  if position_1 == "X" && position_2 == "X" && position_3 == "X"
    return win_combination # return the win_combination indexes that won.
  else
    false
  end
end

That is a very verbose and explicit example of how you might iterate over a nested array of WIN_COMBINATIONS and check each win combination index against the value of the board at that position.

For example, on a board that has a winning combination in the top row, #won? should return [0,1,2], the indexes in the board that created the win:

# Board with winning X in the top row.
board = ["X", "X", "X", " ", " ", " ", " ", " ", " "]

won?(board) #=> [0,1,2]

A board with a diagonal win would function as follows:

# Board with winning X in the right diagonal.
board = ["X", "O", "X", "O", "X", "O", "X", "X", "O"]
#  X | O | X
# -----------
#  O | X | O
# -----------
#  X | X | O

won?(board) #=> [2,4,6]

A board with no win would return false/nil:

board = [" ", " ", " ", " ", " ", " ", " ", " ", " "]
won?(board) #=> nil

You should be able to iterate over the combinations defined in WIN_COMBINATIONS using each or a higher-level iterator to return the correct board indexes that created the win.

Your method should work for both boards that win with an "X" or boards that win with an "O". We've provided you with a helper method called position_taken? that takes a board and an index as arguments and returns true or false based on whether that position on the board has been filled.

board = ["X", "X", "X", "O", " ", "O", " ", " ", " "]
#  X | X | X
# -----------
#  O |   | O
# -----------
#    |   |  

position_taken?(board, 2) #=> true
position_taken?(board, 7) #=> false

Read the specs in spec/game_status_spec.rb starting on LOC 19, the describe "#won?" block.

#full?

The #full? method should accept a board and return true if every element in the board contains either an "X" or an "O". For example:

full_board = ["X", "O", "X", "O", "X", "X", "O", "X", "O"]
full?(full_board) #=> true

incomplete_board = ["X", " ", "X", "O", " ", "X", "O", " ", "O"]
full?(incomplete_board) #=> false

The #full? method doesn't need to worry about draws or winning combinations, simply return false if there is an available position and true if there is not.

There is a great high-level iterator besides #each that will make your code super awesome elegant. But #each will certainly work great too.

#draw?

Build a method #draw? that accepts a board and returns true if the board has not been won but is full, false if the board is not won and the board is not full, and false if the board is won. You should be able to compose this method solely using the methods you used above with some ruby logic.

You can imagine its behavior:

  draw_board = ["X", "O", "X", "O", "X", "X", "O", "X", "O"]
  draw?(draw_board) #=> true

  x_diagonal_won = ["X", "O", "X", "O", "X", "O", "O", "O", "X"]
  draw?(x_diagonal_won) #=> false

  incomplete_board = ["X", " ", "X", " ", "X", " ", "O", "O", "X"]
  draw?(incomplete_board) #=> false

#over?

Build a method #over? that accepts a board and returns true if the board has been won, is a draw, or is full. You should be able to compose this method solely using the methods you used above with some ruby logic.

draw_board = ["X", "O", "X", "O", "X", "X", "O", "X", "O"]
over?(draw_board) #=> true

won_board = ["X", "O", "X", "O", "X", "X", "O", "O", "X"]
over?(won_board) #=> true

inprogress_board = ["X", " ", "X", " ", "X", " ", "O", "O", " "]
over?(inprogress_board) #=> false

#winner

The #winner method should accept a board and return the token, "X" or "O" that has won the game given a winning board.

The #winner method can be greatly simplified by using the methods and their return values you defined above.

x_win_diagonal = ["X", " ", " ", " ", "X", " ", " ", " ", "X"]
winner(x_win_diagonal) #=> "X"

o_win_center_column = ["X", "O", " ", " ", "O", " ", " ", "O", "X"]
winner(o_win_center_column) #=> "O"

no_winner_board = ["X", "O", " ", " ", " ", " ", " ", "O", "X"]
winner(no_winner_board) #=> nil
PreviousSearch EnumeratorsNexttic-tac-toe

Last updated 5 years ago

View on Learn.co and start learning to code for free.

Tic Tac Toe Game Status