👨🏿‍💻
Learn
  • Learn And The Power Of Community
  • Intro
    • learn-co-curriculum/welcome-to-learn-verified
    • learn-co-curriculum/your-first-lab
    • learn-co-curriculum/environment-setup
  • Intro to tic tac toe
    • matz-readme
    • what-is-a-program?
    • hello world
    • Intro to irb
    • Reading-error-messages
    • Data-types
    • variable
    • Variable-assignment lab
    • String interpolation
    • Interpolation-super-power
    • Welcome to tic tac toe
    • Array
    • Tic tac toe board
    • Intro to methods
    • Puts print and return
    • Intro-to-tdd-rspec-and-learn
    • Methods and arguments
    • Say hello (lab)
    • Methods-default-arguments
    • ttt-3-display_board-example
    • ttt-4-display-board-rb
    • Intro-to-cli-applications
    • Greeting-cli
    • cli-applications in Ruby
    • Ruby-gets-input
    • Tic tac toe move
    • Truthiness-in-ruby-readme
    • booleans
    • conditional (if)
    • ttt-6-position-taken
    • ttt-7-valid-move
    • rspec-fizzbuzz
    • Looping-introduction
    • Loop
    • while-and-until-loop
    • Tic Tac Toe Turn lab
    • looping-while-until lab
    • Tic Tac Toe Play Loop (lab)
    • Tic Tac Toe Current Player (lab)
    • Intro to ruby iterators
    • Nested Arrays
    • Boolean Enumerators
    • Search Enumerators
    • Tic Tac Toe Game Status
    • tic-tac-toe
  • OOP tic tac toe
    • intro to oop
    • Intro-to-classes-and-instances
    • Classes-and-instances-lab
    • Instance-methods
    • Instance-methods-lab
    • Object Attributes
    • object-attributes-lab
    • Object Initialization
    • Object-initialize-lab
    • oop barking dog lab
    • Procedural-vs-oop
    • oop tic tac toe
  • Git and github
    • Intro to Version Control
    • Git Repository Basics
    • Git-basics-quiz
    • Forks-and-clones
    • Git Remotes and Github
    • Git Remotes and Github Codealong
    • Thinking Ahead: GitHub as Career Differentiator
    • Github Pull Requests
    • Git Collaboration
    • Git-collaboration-quiz
    • Git Basics Quiz
  • HTML
    • A-quick-tour-of-the-web
    • The-web-is-made-of-strings
    • What-makes-the-web-possible?
    • html-introduction
    • Your first-html-tag-lab
    • Nested-tags-and-attributes
    • Well-formed-html-document-lab
    • HTML elements types overview
    • Researching-HTML-elements
    • Separation-of-content-and-presentation
  • CSS
    • Introduction-to-css
    • introduction-to-css-code-along
  • Procedural Ruby
    • Regex-what-is-a-pattern
    • Regex-basics
    • Regex-lab
    • Regex-match-scan-grep-methods
    • learn-co-curriculum/method-arguments-lab
    • Method-scope
    • Return Values Lab
    • Debugging-with-pry
    • Method-scope-lab
    • Truthiness-code-challenge
    • If Statements Lab
    • Case-statements
    • Case-statements-quiz
    • Logic and Conditionals Quiz
    • Ternary Operators and Statement Modifiers lab
    • Looping Lab
    • looping-quiz
    • learn-co-curriculum/looping-times
    • countdown-to-midnight lab
    • Array introduction
    • Using Arrays
    • Array-CRUD-lab
    • Array-methods
    • Array-methods-lab
    • Square array lab
    • Collect and Return Values
    • Collect Lab
    • Badges and Schedules Lab
    • Oxford comma lab
    • Deli counter lab
    • Reverse Each Word Lab
    • Yield-and-blocks
    • Each Lab
    • Return from Yield Statements
    • My All? Lab
    • My Find Lab
    • Cartoon Collections Lab
    • Enumerators Code Challenge
    • Prime? Lab
    • Sorting
    • Sorting Lab
    • Introduction to Hashes
    • Using Hashes lab
    • Ruby-symbols
    • Hash iteration
    • Hash Iteration Lab
    • Hash Iteration with Collect
    • Intro to Nested Hashes
    • Building Nested Hashes
    • Building Nested Hashes Lab
    • Nested Hash Iteration
    • Nested Hashes Lab
    • Multitype Collections Lab
    • Iterating over Nested Hashes Codealong
    • Other Hashes Codealong
    • Hashes Manipulation Lab
  • OOP Ruby
    • OO Ruby Video: Object Orientation Overview
    • Object Accessors
    • Instance Variables lab
    • Video Review: Object Properties
    • Meowing Cat
    • Intro to Object Orientation - Ruby
    • oo basics lab
    • OO Basics with Class Constants
    • Self
    • OO School Domain lab
    • OO Counting Sentences lab
    • Class Variables and Methods
    • Class Variables and Methods Lab
    • Remembering Objects
    • Puppy Lab
    • Advanced Class Methods
    • Advanced Class Methods Lab
    • Video Review: Object Models
    • OO Email Parser lab
    • OO Anagram Detector lab
    • OO Cash Register lab
    • Intro to Object Relationships
    • Belongs to Object Lab
    • Has Many Object
    • Has Many Object Lab
    • Collaborating Objects Review
    • Collaborating Objects Lab
    • OO My Pets
    • oo kickstarter lab
    • OO Banking lab
    • Has Many Objects Through
    • Has Many Objects Through Lab
    • Intro to Inheritance
    • Intro to Inheritance Lab
    • Super
    • Super Lab
    • Intro to Modules
    • Intro to Modules Lab
    • Mass Assignment
    • Mass Assignment and Metaprogramming
    • Mass Assignment Lab
    • Custom Errors lab
    • OO Triangle lab
  • Scraping and project
    • Gems and Bundler
    • Scraping
    • Scraping Lab
    • Kickstarter Scraping Lab
    • Video Review: Object Orientation and Scraping
    • OO Ruby Object Orientation Video Review
    • Music Library CLI
    • Video Review: Music Library CLI
    • Tic-tac-toe with AI project
    • Student Scraper
    • CLI Data Gem Portfolio Project
    • CLI Data Gem Walkthrough
    • CLI Data Gem Walkthrough: Creating a CLI Scraper Gem
    • Common Anti-Patterns in CLI Data Gem
    • Student Example 1: Refactoring CLI Gem
    • Student Example 2: Refactoring CLI Gem
  • SQL
    • What is SQL
    • SQL Intro and Installation
    • SQL Database Basics
    • SQL Databases and Text Editors
    • SQL Data Types
    • SQL Inserting, Updating, and Selecting
    • Basic SQL Queries
    • SQL Aggregate Functions
    • SQL Aggregate Functions Lab
    • SQL Bear Organizer Lab
    • Edgar Codd and Table Relations
    • Table Relations
    • SQL JOINS
    • SQL Complex Joins
    • SQL Join Tables
    • Grouping and Sorting Data
    • SQL Joins Review Lectures
    • SQL Crowdfunding Lab
    • SQL Library Lab
    • Pokemon Scraper Lab
  • ORM And Active record
    • Why an ORM is Useful
    • Mapping Ruby Classes to Database Tables
    • Mapping Classes to Tables Lab
    • Mapping Database Tables to Ruby Objects
    • Mapping Database Rows to Objects Lab
    • Updating Records in an ORM
    • Updating Records in an ORM Lab
    • Preventing Record Duplication
    • ORMs Lab: Bringing It All Together lab
    • Dynamic ORMs
    • Dynamic ORMs with Inheritance
    • ActiveRecord Mechanics
    • Translating from ORM to ActiveRecord
    • Intro to Rake
    • Mechanics of Migrations
    • Writing Our Own Migrations
    • Migrations and Active Record Lab
    • ActiveRecord CRUD Lab
    • Advanced Finding Lab
    • ActiveRecord Associations
    • ActiveRecord Associations Lab
    • ActiveRecord Associations Lab II
    • ActiveRecord Associations Video Review
    • ActiveRecord Associations Video Review II
    • Video Review: Aliasing ActiveRecord Associations
    • Video Review: Blog CLI with ActiveRecord and Associations
  • Rack
    • How the Internet Works
    • Increasing Layers of Abstraction
    • Inspecting the Web with Rack (lab)
    • The HTTP Request
    • Dynamic URL Routes
    • Dynamic Web Apps with Rack (lab)
    • Rack Responses Lab
    • Rack Routes and GET Params Lab
    • HTTP Status Codes
    • Dynamic URLs and Status Codes Lab
    • Video Review: How The Web Works, Pt 1
    • Video Review: How the Web Works, Pt 2
  • Html
    • How the Web Works
    • Site Planning
    • HTML Fundamentals
    • HTTP Status Codes
    • video review how the web works pt 1
    • How the Web Works, Part 2: Overview
    • Setting Up a New Site
    • Document Structure
    • Text Formatting
    • HTML Tables
    • Html-images
    • HTML Links
    • Html backing-up changes
    • HTML Validation
    • Quiz - HTML Fundamentals
    • Dev Tools Super Power
    • HTML Lists
    • Html issue bot 9000 (lab)
    • HTML Forms and Iframes
    • HTML Map and Contact Form Code-along
    • HTML5 Media
    • HTML5 Video Embed Code-Along
    • HTML5 Semantic Elements
    • HTML5 Semantic Containers Code-along
    • HTML5 Quiz
  • CSS
    • CSS Fundamentals
    • CSS Styling Code Along
    • My Little Rainbow
    • CSS Kitten Wheelbarrow
    • CSS Graffiti Override Lab
    • CSS Issue Bot 9000
    • Your first deployment
    • The Box Model
    • Layout Types
    • Float
    • Clearfix
    • Centering
    • Column Structure
    • CSS Columns Code Along Exercise (lab)
    • Box Model & Page Layout
    • Using Z Index
    • Positioning
    • ZHW Shoes Layout (lab)
    • Zetsy (lab)
    • CSS Box Style Code Along
    • Animal Save (lab)
    • Building Responsive Sites
    • Intro to Responsive Media
    • CSS Media Queries
    • Working with Responsive Type
    • Responsive layout
    • The Viewport Property
    • Responsive Features Code-Along (lab)
    • Bootstrap Introduction
    • Bootstrap Code-Along
    • Bootstrap Grid System
    • Grid Layout Code-Along
    • Bootstrap Navbar Code-Along
  • Sinatra
    • What is Sinatra?
    • Sinatra From Scratch
    • Using the Shotgun Development Server (lab)
    • Sinatra Basics
    • Sinatra Hello World Basics (lab)
    • Routes in Sinatra
    • Sinatra Routes Lab
    • Intro To MVC
    • Sinatra MVC File Structure (lab)
    • Sinatra Views: Using ERB
    • Sinatra Views (lab)
    • Sinatra Basic Views Lab
    • Sinatra Views Lab II
    • Intro To Capybara
    • Dynamic Routes in Sinatra
    • HTML Forms and Params
    • Passing Data Between Views and Controllers in Sinatra
    • Sinatra Forms Lab
    • Sinatra Yield Readme
    • Integrating Models Sinatra Code-along
    • Sinatra MVC Lab - Pig Latinizer
    • Sinatra Basic Forms Lab
    • Sinatra Forms
    • Nested Forms Readme
    • Sinatra Nested Forms Lab: Pirates!
    • Lab Review-- Sinatra Nested Forms Lab: Pirates
    • Sinatra Nested Forms Lab: Superheroes!
    • Sessions and Cookies
    • Mechanics of Sessions
    • Sinatra Basic Sessions Lab
    • Using Sessions
    • Sinatra and Active Record CRUD
    • Sinatra Activerecord Setup
    • Sinatra ActiveRecord CRUD
    • User Authentication in Sinatra
    • Sinatra Sessions Lab - User Logins
    • Securing Passwords
    • Secure Password Lab
    • Sinatra Authentication- Overview
    • RESTful Routes
    • Restful Routes Basic Lab
    • Sinatra ActiveRecord Associations: Join Tables
    • Using Tux in Sinatra with ActiveRecord
    • ActiveRecord Associations in Sinatra
    • Sinatra Multiple Controllers
    • Sinatra and Active Record: Associations and Complex Forms
    • Sinatra Playlister (lab)
    • Welcome to NYC Sinatra! (lab)
    • Building a Site Generator, Part 1- Overview
    • Building a Site Generator, Part 2- Overview
    • Fwitter Group Project
  • Rails
    • Welcome To Rails
      • Rails Application Basics
      • Rails Static Request
      • Rails Hello World Lab
      • Rails Model View Controller
      • Intro to Rails- Overview
    • Intro to REST
    • Active Record Models and Rails
    • ActiveRecord Model Rails Lab
    • RESTful Index Action Lab
    • Rails Dynamic Request
    • Rails Dynamic Request Lab
    • Rails URL Helpers
    • Rails URL Helpers Lab
    • Rails form_tag
    • Rails form_tag Lab
    • Create Action
    • Create Action Lab
    • Index, Show, New, Create Lab
    • Edit/Update Action
    • form_for on Edit
    • Strong Params Basics
    • form_for Lab
    • Rails Generators
    • CRU with form_for Lab
    • Resource and Scaffold Generator
    • Rails Blog scaffold
    • Todo mvc assets and managing lists
    • Rails Forms Overview
    • ActiveRecord Validations
    • ActiveRecord Validations Lab
    • Validations in Controller Actions
    • Validations In Controller Actions Lab
    • Validations with form_tag
    • Validations with form_for
    • DELETE Forms and Requests
    • Testing in Rails
    • Validations with form_tag
    • CRUD With Validations Lab
    • Join the Fun rails
    • Activerecord lifecycle reading
    • Displaying Associations Rails
    • Active Record Associations Review
    • Forms And Basic Associations Rails
    • Forms And Basic Associations Rails Lab
    • Basic Nested Forms
    • Displaying Has Many Through Rails
    • Displaying Has Many Through Rails Lab
    • Has Many Through Forms Rails
    • Has Many Through Forms Rails Labs
    • Has Many Through in Forms Lab Review- Overview
    • Deep Dive into Nested Forms- Overview
    • Layouts And Templates in Rails
    • Rails Layouts And Templates Lab
    • Simple Partials
    • Simple Partials Lab
    • Partials with Locals
    • Partials with Locals
    • Refresher on MVC
    • Refactoring Views With Helpers
    • Refactoring Views With Helpers Lab
    • Model Class Methods
    • Optimal Queries using Active Record (lab)
    • Routing And Nested Resources
    • Nested Resource Routing Lab
    • Modifying Nested Resources
    • Modifying Nested Resources Lab
    • Namespaced Routes
    • Namespaced Routes Lab
    • Todomvc 2 lists have items
    • TodoMVC 3: Mark Items Complete
    • Todomvc 4 refactoring with partials and helpers
    • Todomvc 5 deleting items
    • Introduction to Authentication and Authorization
      • Cookies and sessions
      • Cookies and Sessions Lab
      • Sessions Controller
      • Sessions Controller Lab
      • Login Required Readme
      • Login Required Lab
      • Using has_secure_password
      • Has_secure_password lab
      • Authentication- Overviewn
      • OmniAuth
      • Omniauth Lab
      • Omniauth review lecture in todomvc
      • Authentication and authorization recap and gems
    • Rails Amusement Park lab
    • How to Find Gems
  • JavaScript
    • Intro to JavaScript
      • JavaScript Data Types
      • JavaScript Data Types Quiz
      • JavaScript Variables
      • JavaScript Comparisons
      • Conditionals
      • Logical Operators
      • Functions
      • Intro to Debugging
      • Intro to Testing
      • JavaScript Basics Quiz
    • Scope
      • Scope chain
      • JavaScript Practice Scope Lab
      • Lexical scoping
      • Errors and Stack Traces
      • Hoisting
    • Arrays And Objects
      • Objects
      • JavaScript: Objects and Arrays Quiz
      • Object Iteration
      • JavaScript Logging
      • Traversing Nested Objects
      • Filter
      • Map
    • Functions Revised
      • First-Class Functions Lab
      • First-Class Functions
      • First-Class Functions Practice
      • First-Class Functions Practice Lab
    • OOP
      • Creating Objects
      • Object Methods and Classes
      • Using Prototypes
      • Using Classes in Javascript
      • JavaScript This Walkthrough
      • This Code-along
      • Bind, Call, and Apply Readme
      • Bind, Call, Apply Lab
      • Object Relations
      • Association Methods in Javascript
      • Class Relations Lab
      • JavaScript Closures and Higher Order Functions
      • Closures Lab
      • JavaScript Arrow Functions
      • Daily Lunch Lab
    • DOM
      • Introduction to the DOM
      • Introduction to the DOM Lab
      • More on the DOM
      • Creating and Inserting DOM Nodes
      • The DOM Is a Tree
      • Listening to Nodes
      • Modify HTML With jQuery
      • Modifying HTML Lab
      • jQuery Selectors
      • Document.ready
      • Acting On Events Lab
      • DOM Quiz
    • Templates
      • Introduction to CSS
      • CSS Quiz
      • CSS Libraries
      • CSS Libraries Lab
      • Intro to Templates
      • Template Engines
      • Template Engines Lab
      • Advanced Templating
      • Advanced Templating Lab
    • Asynchronous JavaScript
      • Intro to XHR Code Along
      • Hitting APIs Lab
      • Advanced AJAX Lab
      • AJAX and Callbacks
      • AJAX and Callbacks Lab
      • REST Refresher
      • REST Quiz
      • Fetch
      • JavaScript fetch() Lab
      • Intro to Mocha
      • Testing with Spies
      • Testing with Mocks and Stubs
  • Rails and JavaScript
Powered by GitBook
On this page
  • Objectives
  • Overview
  • Instructions
  • Helper Methods in lib/turn.rb
  • Workflow
  • #turn
  • Conclusion
  1. Intro to tic tac toe

Tic Tac Toe Turn lab

Objectives

  1. Build a method composed of the use of many methods ("helper methods") previously defined.

  2. Use method return values to control the logic of a composed method.

  3. Use an input validation loop or recursion to create a loop.

  4. Build a CLI that uses a single method call to execute.

Overview

You're going to be building a CLI for a single turn of Tic Tac Toe.

A turn of Tic Tac Toe is composed of the following routine:

  1. Asking the user for their move by position 1-9.

  2. Receiving the user input.

  3. Convert position to an index.

  4. If the move is valid, make the move and display the board to the user.

  5. If the move is invalid, ask for a new move until a valid move is received.

All these procedures will be wrapped into our #turn method. However, the majority of the logic for these procedures will be defined and encapsulated in individual methods (some of which you may have built previously).

You can imagine the pseudocode for the #turn method:

ask for input
get input
convert input to index
if index is valid
  make the move for index
  show the board
else
  ask for input again until you get a valid input
end

Instructions

Helper Methods in lib/turn.rb

Before defining #turn, you should define the following methods:

#display_board

Should accept a board as an argument and print out the current state of the board for the user.

#valid_move?

Should accept a board and an index from the user and return true if the index is within the correct range of 0-8 and is currently unoccupied by an X or O token.

Hint: While not explicitly required by this lab, you might want to encapsulate the logic to check if a position is occupied in its own method, perhaps #position_taken?

#move

This method should accept a board, an index from the user (which was converted from their raw input with input_to_index), and a token to mark that position with (you can give that argument a default value of 'X'––we're not worrying about whose turn it is yet). The method should set the correct index value of that position within the board equal to the token.

Workflow

Start with building those methods (or copying code you might have written before) and making the first few tests in spec/turn_spec.rb pass. You can use the learn --fail-fast or rspec --fail-fast mode to only see 1 failure at a time and allow you to work through those method definitions.

You'll then need to build your #turn method. Before building a full #turn method according to the failing tests, let's setup a quick CLI so that you can watch your #turn method perform as you build, visually confirming it behaves as expected.

Open bin/turn, you'll see that it is already setup with #!/usr/bin/env ruby so you can execute it by running ./bin/turn or ruby bin/turn from your terminal. It currently does nothing (because it has no code), but try it out just for fun.

The purpose of this file is to execute a turn of Tic Tac Toe. The first thing it needs to do is load our library of methods defined in lib/turn.rb.

Edit bin/turn:

#!/usr/bin/env ruby
require_relative '../lib/turn'

By adding require_relative '../lib/turn' we are telling Ruby to load a file from a relative path to the current file. Since we're in bin we have to go up a directory and into lib to find turn.rb, thus the path ../lib/turn. You never need to give the .rb extension to a path for require_relative. Ruby assumes you mean a .rb file.

Next, the CLI needs to setup the data required to play a game of Tic Tac Toe, namely, the board variable to store the array we use to keep track of the state of the board.

Edit bin/turn:

#!/usr/bin/env ruby

require_relative '../lib/turn'

board = [" ", " ", " ", " ", " ", " ", " ", " ", " "]

We're now ready to start the game. Let's welcome the user and show them the board at the start of the game.

Edit bin/turn:

#!/usr/bin/env ruby

require_relative '../lib/turn'

board = [" ", " ", " ", " ", " ", " ", " ", " ", " "]

puts "Welcome to Tic Tac Toe!"
display_board(board)

Notice how we evoke the #display_board method defined in lib/turn.rb, passing the local board data into it via an argument on the last line.

Now let's run this CLI: bin/turn or ruby bin/turn from your terminal. You should see:

$ ./bin/turn
Welcome to Tic Tac Toe!
   |   |   
-----------
   |   |   
-----------
   |   |   

Great! Now the next thing the CLI needs to do is kick off a turn of the game. We know we're going to build a #turn method to encapsulate that procedure, so even though we haven't defined it yet, let's add the call to the soon-to-be-coded #turn method to our CLI right now.

Edit bin/turn:

#!/usr/bin/env ruby

require_relative '../lib/turn'

board = [" ", " ", " ", " ", " ", " ", " ", " ", " "]

puts "Welcome to Tic Tac Toe!"
display_board(board)
turn(board)

If we ran the CLI right now, without defining #turn in lib/turn.rb, we'd get a NameError complaining about an undefined local variable or method turn.

Let's quickly jump to lib/turn.rb and just stub out the most simple version of the #turn method.

Add to lib/turn.rb

def turn(board)
  puts "Please enter 1-9:"
end

Let's run the CLI now: bin/turn or ruby bin/turn from your terminal. You should see:

$ ./bin/turn
Welcome to Tic Tac Toe!
   |   |   
-----------
   |   |   
-----------
   |   |   
Please enter 1-9:

Great! Now as we add logic to #turn, we can use our CLI to see how it behaves.

#turn

The hard part of the #turn method is figuring out how to handle invalid input. We know that when a user enters invalid input, we want to ask them for input again. Imagine the pseudocode again:

get input
convert input to index
if index is valid
  make the move for input
else
  ask for input again until you get a valid input
end

Asking for input again is the hard part. We either need a mechanism to repeat the entire logic again until input satisfies the valid requirement, like a loop of some sort, or we need to be able to execute a procedure that asks for a user's input again. It's almost like what we might want to do in the event of invalid user input is just replay the entire turn. No move was made, so why not just run #turn again?

As you are already familiar with loops, that is a totally acceptable solution to the input validation problem as well.

As you try to get it working, keep playing with bin/turn until it works as expected, endlessly asking you for a valid turn input. If you ever need to exit the CLI without giving an input, just hit CTRL+C (sometimes ALT+C or COMMAND+C).

The tests will pass once you have your CLI working right, but don't be scared of running the tests to see the failures for #turn and seeing if they point you in the right direction.

Conclusion

Once you define #turn as specified by the tests in spec/turn_spec.rb, your CLI should work for a turn of Tic Tac Toe and running it should yield:

$ ./bin/turn
Welcome to Tic Tac Toe!
   |   |   
-----------
   |   |   
-----------
   |   |   
Please enter 1-9:
1 # I entered 1 in response to the gets prompt.
 X |   |   
-----------
   |   |   
-----------
   |   |   

A subsequent run might yield:

$ ./bin/turn
Welcome to Tic Tac Toe!
   |   |   
-----------
   |   |   
-----------
   |   |   
Please enter 1-9:
5
   |   |   
-----------
   | X |   
-----------
   |   |   

Currently our program only allows us to run 1 turn, the first turn. If you wanted to see how #turn would behave say on the third turn of the game, make the following edits to bin/turn:

#!/usr/bin/env ruby

require_relative '../lib/turn'

board = [" ", " ", " ", " ", " ", " ", " ", " ", " "]

puts "Welcome to Tic Tac Toe!"

move(board, 4, "X")
move(board, 0, "O")

display_board(board)

turn(board)

Notice that before the game even really starts, we hard code an execution of two moves, X to the middle position (4), and O to the top left (0).

When we run the CLI, we'd see:

$ ./bin/turn
Welcome to Tic Tac Toe!
O |   |   
-----------
  | X |   
-----------
  |   |   
Please enter 1-9:

The board is pre-filled and the turn will now add a 3rd token to the board.

Try this edit to bin/turn:

#!/usr/bin/env ruby

require_relative '../lib/turn'

board = [" ", " ", " ", " ", " ", " ", " ", " ", " "]

puts "Welcome to Tic Tac Toe!"

move(board, 4, "X")
move(board, 0, "O")
move(board, 1, "X")

display_board(board)

turn(board)

Here we are manually making 3 moves, an X, an O, and then an X, as would proceed normally in a real game. That means that the next turn belongs to the O player, right? Run your CLI and enter a move for O and see what happens. Can you guess?

$ ./bin/turn
Welcome to Tic Tac Toe!
 O | X |   
-----------
   | X |   
-----------
   |   |   
Please enter 1-9:
8
 O | X |   
-----------
   | X |   
-----------
   | X |   

It was O's move and when I entered 8 to block X with my O, our program put an X in!!! Why? We'll have to fix that. Can you anticipate what we might need to build to make that work?

The other issue with our current program is that only one turn is being played. We could actually work around that right now. How many turns does our CLI execute? Currently only 1 (even with the explicit calls to move, those aren't user turns, they are only updating the board). Is there anything preventing us from just calling #turn 9 times so it's like a real game with 9 turns? Nope! Let's try it with a final edit to bin/turn:

#!/usr/bin/env ruby

require_relative '../lib/turn'

board = [" ", " ", " ", " ", " ", " ", " ", " ", " "]

puts "Welcome to Tic Tac Toe!"

display_board(board)

turn(board)
turn(board)
turn(board)
turn(board)
turn(board)
turn(board)
turn(board)
turn(board)
turn(board)

Here's an entire execution of this CLI (remember, when you see a number that means the player put in that input).

./bin/turn
Welcome to Tic Tac Toe!
   |   |   
-----------
   |   |   
-----------
   |   |   
Please enter 1-9:
1
 X |   |   
-----------
   |   |   
-----------
   |   |   
Please enter 1-9:
2
 X | X |   
-----------
   |   |   
-----------
   |   |   
Please enter 1-9:
3
 X | X | X
-----------
   |   |   
-----------
   |   |   
Please enter 1-9:
4
 X | X | X
-----------
 X |   |   
-----------
   |   |   
Please enter 1-9:
5
 X | X | X
-----------
 X | X |   
-----------
   |   |   
Please enter 1-9:
6
 X | X | X
-----------
 X | X | X
-----------
   |   |   
Please enter 1-9:
7
 X | X | X
-----------
 X | X | X
-----------
 X |   |   
Please enter 1-9:
8
 X | X | X
-----------
 X | X | X
-----------
 X | X |   
Please enter 1-9:
9
 X | X | X
-----------
 X | X | X
-----------
 X | X | X

Another issue, besides only marking Xs as described above, is that the game played way too many turns! We need it to know how to quit if someone wins.

Even with these deficiencies, this #turn method means you are very close to building a complete Tic Tac Toe game. Get excited!

Previouswhile-and-until-loopNextlooping-while-until lab

Last updated 5 years ago

Calling a method from within itself is totally okay in programming. In fact, it is an elegant solution to some complex problems. Recursion is the repeated application of the same procedure. There's an easter egg from Google developers on that page; can you find it?

View on Learn.co and start learning to code for free.

Google it!
Building a Tic Tac Toe Turn